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Abstract

In this report, a nested multi-grid finite difference model for simulating tsunami
propagation and runup is presented. The model has the option to use either the linear
or the nonlinear version of shallow-water equations with different type of coordinate
system (i.e. either Cartesian or Spherical) in each subregion. Although different grid
sizes are employed in each subregion, physical variables in all subregions are solved
simultaneously. The model also allows any ratio of grid sizes between two adjacent
subregions.

A Fortran computer program for the model is documented in this report. Detailed
descriptions for the main programs and subroutines are provided. A manual that
describes input and output data files is also given with examples. This model could
easily be applied to different cases by changing input and control files only.

In the linear component of the model, the linear shallow-water equations are
discretized with the explicit leap-frog finite difference scheme. For the constant depth
case the numerical dispersion induced by the leap-frog scheme is optimally controlled
by choosing appropriate time step size and grid sizes so that it plays an equivalent
role of the frequency dispersion represented in the linear Boussinesq equations.

In the nonlinear component of the model, nonlinear shallow-water equations are
also discretized with the explicit leap-frog finite difference scheme, whereas nonlin/—
ear convective terms are discretized with an upwind scheme. A moving boundary
treatment is applied to track movements of the shoreline.

To verify the nested multi-grid model, several numerical examples are presented
and some of them are compared with available analytical solutions. In general, good
agreement is observed.

The multi-grid coupled model is used to simulate the 1986 Hwa-lien (Taiwan)
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he general feature of the refraction and diffraction of




tsunami around Taiwan is presented. The numerical results are compared with the
tide-gauge data at Hwa-lien harbor, Ishigaki harbor (Ishigaki island, Japan) and
Hirara harbor (Miyako-jima island, J apan). A general agreement is obtained in terms
of the dominant period of oscillations in the Hwa-lien harbor and the arrival time of
the first leading wave at Ishigaki island and Hirara harbor. A maximum inundation

map at Hwa-lien harbor is produced.
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1 Introduction

mi is a Japanese word that is the combination of two word roots : “tsu” means

Tsuns

'..D

harbor and “nami” means wave. Therefore, tsunami literally means “harbor wave.’

The word was originally created to describe large amplitude oscillations in a harbor
under the resonance condition. Most of major tsunamis have been generated by
undersea earthquakes. The impulsive sea floor movement in the earthquake source
(fault) region causes the deformation of water surface instantaneously. The suddenly
gained potential energy is converted to kinetic energy by the gravitational force,
which serves as the restoring force of the system.

The leading wave of a tsunami has a wavelength proportional to the longitudinal
dimension of the earthquake source region, which could be of the order of magnitude
of several hundreds or a thousand kilometers for a major earthquake. Therefore,
the leading tsunami can be considered as a long wave with a propagating speed
that is proportional to (g’h)l/Q, where A is the water depth. For example, in the
Pacific ocean where the average depth is about 4 km, the leading wave of a tsunami
travels approximately at a speed of 700 km/hr. Although the wave speed is high, the
amplitude of a typical tsunami in the deep oceaﬁ, approximately 1 or 2 m, is usually
very small in comparison with the wavelength. The corresponding orbital velocity
and the associated momentum fluxes are also small in the deep ocean. However,
as a tsunami reaches a coastal region where the water depth becomes shallow, the
amplitude of the tsunami increases and the wavelength decreases. A tsunami could
cause severe coastal flooding and property damages.

Tsunamis have been observed and recorded since ancient times, especially in
Japan and the Mediterranean areas. The earliest recorded tsunami occurred in 2.000
B.C off the coast of Syria (Lander and Lockridge, 1989). The oldest reference of
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tsuttami record is dated back to the 16tn century in the United States (Lox, 1987,
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During this century, more than 100 tsunamis have been observed in the United
States (Lander and Lockridge, 1989). Among them, the 1946 Alaskan tsunami, the
1960 Chilean tsunami and the 1964 Alaskan tsunami were recorded as three most
destructive tsunamis in the United States’ history. The 1946 Aleutian earthquake
(Richter scale 7.3) generated a catastrophic tsunami. It attacked the Hawaiian Islands
after traveling from the source region for about 5 hours and killed 159 people. The
reported property damage reached $ 26 million. The 1960 Chilean tsunamis striked
the Hawaiian Islands after traveling across the Pacific Ocean from the Chilean coast
for 14 hours. It caused devastating damage not only along the Chilean coast, where
more than 1,000 people were killed and the total property damage from the combined
effects of the earthquake and tsunami was $ 417 million, but also at Hilo, Hawail,
where 61 deaths and $ 23.5 million in property damage were reported. The 1964
Alaskan tsunami triggered by the Prince William Sound earthquake (Richter scale
8.4), which was recorded as one of the largest earthquakes in the North American
Continent, caused the most destructive damage in the Alaska’s history. The tsunami
killed 106 people and the total damage amounted to $ 84 million in Alaska.

Recently, three undersea earthquakes in the Pacific Ocean have generated devas-
tating tsunamis (Cho, 1995). The epicenter of the 1992 Nicaragua earthquake was
about 100 km off the Nicaragua coast. The second one was near Flores Island in
Indonesia, which occurred on December 12, 1992. The third one was near Hokkaido
Island in Japan, which striked on July 12, 1993. These earthquakes occurred near res-
idential areas. Therefore, the damage caused by subsequent tsunamis was unusually
large. Table 1.1 shows magnitudes of these earthquakes, loss of lives and observed
maximum run-up heights.

An effective and economic way for the tsunami hazard mitigation planning is

to construct inundation maps along those coastline vulnerable to tsunami flooding.




Table 1.1: The recent earthquakes occurred in the Pacific Ocean.

] location H scale (Richter) } loss of lives [ observed run-up (mﬂ

Nicaragua | 7.0 168 10 ]
Indonesia | 7.5 2,080 26
| Japan | 7.8 237 30

These maps should be developed based on the historical tsunami events and the
projected scenarios. The developed inundation map could be used by the civil defense
organizations to make evacuation plans in the event of a real tsunami attack. To
produce realistic and reliable inundation estimates, it is essential to use a numerical
model that calculates accurately tsunami propagation from a source region to the
coastal areas of concern and the subsequent tsunami run-up and flooding. Because
the establishment of safety zone along those coastline liable to tsunami attacks is only
possible with the accurate information of tsunami inundation, it is very important to
model the tsunami propagation and the inundation accurately and efficiently.

Only few numerical studies have been reported for the transoceanic propagation
and inundation of tsunamis. Among these, Houston (1978) studied interactions of
tsunamis with the Hawaiian Islands. He used a finite difference model, which solved
the linear shallow-water equations, to simulate the propagation of the 1960 Chilean
and the 1964 Alaskan tsunamis from the source regions to near the Hawaiian Islands.
A finite element numerical model based on the Helmholtz equation was then used
to calculate the interaction of tsunamis with the coastline of the Hawaiian islands.
A good agreement was observed between numerical solutions and tidal gage records
at several locations. He also concluded that nonlinear and dispersive effects might
not play important roles in the interaction of the 1960 Chilean and the 1964 Alaskan

tsunamis with the coastline of the Hawaiian Islands.

Imamura et al. (1988) also studied the transcceanic propagation of beth the
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1960 Chilean and the 1964 Alaskan tsunamis from the source regions to the Japanese
coastline. They developed a numerical model by discretizing the linear shaliow-
water equations with the leap-frog finite difference method. The numerical dispersion
resulting from the leap-frog scheme was manipulated such that it replaced the physical
dispersion of the linear Boussinesq equations. However, the numerical dispersion
could not reproduce correctly the physical dispersion due to the ignorance of cross-
differentiation term. Maximum run-up heights at several locations were calculated by
using the Green’s law and compared with tidal gage records. A reasonable agreement
was observed.

Mader and Curtis (1991) investiéated the propagation of both the 1946 and 1964
Alaskan tsunamis and the 1960 Chilean tsunami from the source regions to Hilo,
Hawaii. In the numerical model, the nonlinear shallow-water equations were dis-
cretized with a finite difference scheme. Because calculations were performed on a
personal computer, large spatial grid sizes were used; 20 mun (=~ 36 km) in the Pacific
Ocean and 5 min (=~ 9 km) near the Hawaiian Islands. The tsunami run-up at Hilo
Bay was then calculated by using a 100 meter grid system. Therefore, there was an
abrupt change from the large grid system to the small grid system in their numerical
model. The offshore boundary of the small grid system was represented by a single
point in the large grid system. Hence, the boundary condition was always uniform
along the offshore boundary.

~In -this report, we describe a coupled models simulating a distant propagation
. and an associated run-up process of tsunamis, respectively. For a distant tsunami,
fsunami could travel across the Pacific Ocean. Both the frequency dispersion and
Coriolis force could play important roles. On t.he.other hand, the wave slope of a
typical tsunami is very smail. Therefore, the nonlinear convective inertia force is not

significant and can be ignored. The linear Boussinesq equations including Coriolis



force are adequate to describe the propagation of tsunamis (Imamura et al., 1988;
Liu et al., 1994c). Generally, the distant propagation model requires a huge amount
of computer memory size and computing time. However, these requirements have
rapidly become a less problem because of the advancement of computer technology.

As tsunamis propagate into the shallow-water region, the wave amplitude in-
creases and the wavelength decreases due to shoaling. The nonlinear convective
inertia force becomes increasingly important. In the very shallow water, the bottom
frictional effects become significant, while the significance of the frequency dispersion
diminishes. Therefore, the nonlinear shallow-water equations including bottom fric-
tional terms should be used in the description of the tsunami inundation. To obtain
the information on the inundation area, a special treatment is required to track the
location of a moving shoreline as waves rise and recede.

In next section, the linear model is presented. In the linear model, an explicit
staggered leap-frog finite diﬁerenge method is used to discretized the linear shallow-
v‘}ater equations. It is shown that finite difference solutions satisfy the linear Boussi-
nesq equations up to the third order in terms of the grid size, if the time-step size,
At, and the spatial grid size, Az, are chosen according to the following relation-
ship: (Ax)? = 4h® + gh(At);/ where h is the water depth and g is the gravitational

T : o1
acceleration. -

"The nonlinear model! is described in section 3. The nonlinear shallow-water equa-
tions including bottom friction terms are used as the governing equations. The ex-
plicit leap-frog finite difference scheme is also used to discretize the linear terms of
the governing equations. The upwind difference scheme is employed to discretize the
nonlinear convective inertia terms of the momentum equations. The bottom friction

is medeled by using either Chezy’s cr Manning’s formula. A simple numerical scheme

derived from the continuity equation is used to track the moving shoreline.




In section 4, a multi-grid coupled model is applied to the Taiwanese tsunami oc-
curred in 1986. The model is used to simulate the propagation of tsunamis from the
source region near the Taiwanese coast. The nonlinear part in the coupled model
is then used to simulate the flooding inside Hwa-Lien Harbor. The maximum inun-
dation map at the Hwa-Lien Harbor is estimated and compared with available field
observed data.

In section 5, a explanation on main program, subroutines, parameters and vari-
ables is presented. A brief manual which tells how to use this multi-grid coupled

model is also described. The computer codes for the multi-grid coupled models is

given in appendix.




2 Linear Model
2.1 Introduction

Most of tsunami-generating earthquakes occur in subduction zones around the Pacific
Ocean rim, where the dense crust of the ocean floor dives beneath the edge of the
lighter continental crust and sinks down into Earth’s mantle (Folger, 1994). These
subduction zones include the west coasts of North and South America, coasts of
Japan, East Asia, and many Pacific island chains. A large scale tsunami may cause
devastating damage not only in neighboring countries but also on far away shores.
For instance, the 1960 Chilean tsunami caused severe damages not only along Chilean
coastline but also at Hilo, Hawaii and along Japanese coastline. The leading tsunami
arrived at the Hawaiiaﬁ Islands chain after roughly 14 hours traveling and at Japanese
coast after 22 hours traveling across the Pacific Ocean (Imamura et al., 1988; Liu et
al., 1994c).

A tsunami may have an initial wavelength of several tens to hundreds of km.
The nonlinear convective and bottom friction terms are relatively small and can be
ignored, while frequency dispersion effects are depending on the wavelength and could

be included in the governing equations of the linear model.

2.2 Governing Equations

The nonlinear effect is insignificant, while the frequency dispersion effect could be
significant for shorter waves. Therefore, a distant propagation of tsunamis can be
adequately modeled using the‘linear Boussinesq equations (Imamura et al., 1988,
Kajiufa and Shuto, 1990; Liu et al., 1994c). Furthermore, a tsunami travels across
the ocean from the source region to the coastal region where the water depth is
relatively shallower. two sets of governing equations are emploved to simulate the

fransoceanic propagation, i.e.., the linear Boussinesq equations in terms of both the




spherical and the Cartesian coordinate systems. After neglecting nonlinear terms, we

have the following linear Boussinesq equations in the spherical coordinate system as:

ac 1 [P 8 T
2 ity = 2
ot * Rcosy l@w * dp <COS(”Q)J 21)
oP gh 8C
ot * Rcosy o -Je
L o[ B a8 /Py 0 0
- Rcosqp@—w {BRcoscp—é; {5{5 <E) - 5; (coscp—h—> H (2:2)
9Q _ ghdc
ot T Rap L
10 W a0 (P 0 Q
= Ray [zé—;;& {% (5) + 55 (coe) H 23)

in which (¥, ¢) denote the longitude and the latitude of the Earth. Eliminating P

and Q from equations (2.1) - (2.3), the following equation can be obtained in terms

_gh* 9% N gh® 0 o 1 o8 ¢
T 3R%cosip Oyt 3R4cosy Do 8cp cosy 8(,0 (p&p

gh? i a¢ , 0 8 1 8%
% 2 Z( = 2= 2.4
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where the water depth is assumed to be constant

of ¢ without considering the Coriolis force terms.

0%¢ ___gh
Ot R2cos?y

82@_'_ S CcoS
BN C‘Wa Og“a

For a smaller scale computation, a local Cartesian coordinate system can be used.
After neglecting nonlinear terms from the Boussinesq equations, the linear Boussinesq

equations can also be obtained in the Cartesian coordinate system as:
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In the momentum equations (2.6) and (2.7), the Coriolis effects are also not consid-
ered. Eliminating P and Q from equations (2.5) - (2.7), the following equation can

be obtained in terms of ¢.
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For the constant water depth case, equation (
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) can be simplified to be

The fourth-order derivatives in equations (2.4) and (2.9) are frequency dispersion
terms. If they are ignored, the linear Boussinesq equation is reduced to the wave

equation, which can be derived directly from the linear shallow-water equations.

2.3 Finite Difference Scheme

Equations given in (2.1) - (2.3) and (2.5) - (2.7) are difficult to solve with finite
difference scheme due to higher order derivative terms representing the frequency
dispersion. In this study, the leap-frog finite difference scheme is used to solve the
linear shallow-water equations, i.e. without frequency dispersion terms. The numer-
ical scheme is simple and has the second-order accuracy (Imamura and Goto, 1988:
Kowalik. 1993).

In general, the leap-frog scheme has a truncation error of O((AZ)%, (Ay), (A8

and is stable if the Courant condition satisfies. In the modified equation of the




leap-frog scheme (Warming and Hyett, 1974), the leading error term is given by the
third-order derivative form and hence the solution may predominantly show disper-
sive errors. However, the leap-frog scheme contains no even derivative error in the
modified equation, so that the solution is not dissipative. In this study, the numerical
dispersion resulting from the numerical discretization of the leap-frog finite difference
scheme is manipulated to mimic the frequency dispersion of the linear Boussinesq
equations.

In this report, the following corrected finite difference equations are proposed

(Abbott et al., 1981; Cho, 1995):

nt1/2 —1/2
m -y LBy = Plysy | @l ~ @z (2.10)
At Az Ay
n+l _ pn n+1/2 -n+1/2
i+1/2,7 i+1/2,5 4 nhCiJ,-l,j G4y . vgh
At 7 Azx 12Az
n+1/2 +1/2 +1/2 n+1/2 +1/2 +1/2
(R 2+ ) — (R - P ) =0 (210
1 +1/2 1/2
Z;+1/2 — Qi1 4 ghCZjH/ - zn;r ! L vgh
At Ay 120y
n+1/2 atl/2 | nel/2 +1/2 +1/2 £1/2
'{(€i+1,g/+1 - 2@i,j+1/ + @i—l,J/ﬂ) - (Czn+1j/ -2 zn] 2+ Cin—-l,]/ )] =0 (2.12)

in which ~ takes a value of one for the proposed scheme. On the other hand, the
scheme reduces to Imamura and Goto’s scheme (1988) if v = 0. After a lengthy but
straightforward algebra, the modified equation associated with the proposed scheme

can be obtained for ¢ as (Cho, 1995):
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in which a uniform grid, Az = Ay, has again been used. For the proposed modified
scheme, v = 1 and the last term of equation (2.13) vanishes. The leading order terms
in equation (2.13) are the same as those in the wave equation. The terms of O({Az)?)
and of higher order are the results of numerical discretization. If At and Az are
chosen according to the relationship (Az)? = 4A? + gh(At)2, the numerical dlsp;ers1(;;1
from the modified explicit leap-frog scheme mlmlcsthefrequency dispersion of the
Iiﬁear Boussinesq equations. That is, we actually get numerical solutions which
’satisfy the Boussinesq equations by solving equations (2.10) - (2.12). Furthermore,
the accuracy of the numerical scheme has been raised from second order to third
order. When v = 0, equation (2.13) is the same as that used by Imamura and Goto
(1988), which does not lead to a perfect match between the modified equation and
the linear Boussinesq equation (2.9), because of the appearance of the additional
cross-differentiation term in equation (2.13).

From the continuity equation (2.10), the proposed leap-frog scheme calculates the
free surface displacement at the (4, j) grid point on the (n+1/2)-th time step. These
computations are fully explicit and require information on the volume flux compo-
nents and the free surface displacement from the previous time step. The volume
flux components are not evaluated at the same location as that for the free surface
displacement. Figure 2.1 shows a grid system in which the free surface displacement
is calculated at the center and the volume fluxes are obtained at the surrounding
grid points, i.e., P12, Piciyaj, Qij+1/2, and @sj-1/2. The momentum equations,
(2.11) and (2.12), are then used to calculate the volume flux components, Plf'fi/l/zj and

7;&1 /o~ Note that the calculations for the free surface displacement and the volume

flux components are also staggered in time.
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Figure 2.1: A sketch of the staggered finite difference grid system
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2.4 Numerical Dispersion

In this section, the numerical dispersion generated by the proposed scheme is investi-
gated. To determine the dispersion of the modified leap-frog finite difference scheme,

a progressive wave is considered (Mei, 1989):
g — Aei(k:z-i-kyy—wt) , k_? — kz2 + kyz (2‘14)

where 1 = \/—1 is the unit imaginary number and k; and k, are z- and y-components
of wave number vector k, respectively. Substituting equation (2.14) into equation

(2.13), the following relation can be derived

2 )2 211/
C = % = (gh)'/? [1 - (—k-;i + (1 - ﬂ/)EAT)— (ﬁzk—ky) J (2.15)

Once again when v = 1 (i.e., the modified explicit leap-frog method is used) the dis-
persion relationship (2.15) becomes the same as that derived from the linear Boussi-
nesq equation, that is

: 271/2
C= % = (gh)/ [1 - (—kgﬂ} (2.16)

For one-dimensional problems with waves traveling in the either z- or y-direction, i.e.,
either k, or k, equals to zero, both explicit schemes yield the same phase velocity
as that produced by the linear Boussinesq equations. For obliquely traveling waves,
however, the phase velocity is faster than that of the linear Boussinesq equations when
7 = 0 and the largest discrepancy occurs when waves propagate in the direction of

(2n+1)I, n =0, 1, 2, ..., with respect to the z-axis.

2.5 Stability Analysis

In this section, the stability condition is determined for the numerical algorithms

given in equations (2.10) - (2.12}. Assuming that solutions for these equations can




be written in the following Fourier forms (Lapidus and Pinder, 1982):

C= ﬁcptezkxze%k‘yy (2.17)
_ t ikez 2kyy

P = Rp'e'=Te (2.18)

Q= Qopteikzzeikyy (2.19)

in which ¢, B, and @, are initial values of ¢, P and @, respectively. We look for the

stability condition which requires that the absolute value of amplification factor, [p2t],
is less than or equal to unity. Substituting equations (2.17) - (2.19) into equations
(2.10) - (2.12) and using the following notation: ¢ = n.At (no =0, 1, 2, ..., n, ),

=002 (1o =0,1,2, ., i, ...), and y = oAy (Jo =0, 1, 2, ..., 7, ...), we obtain

(pRH? — p ARG, 4 2irgsin 0, B + 2ir, sin GyQo =0 (2.20)
2i |
gchrx sin8,(3 — vsin26,)p ¢, + (0> = 1)B =0 (2.21)
2 .
ngfry sin 0, (3 — 7 sin’ 0,)p™2 ¢, + (p™ - 1)@, =0 (2.22)

where the following notations have been used for simplicity

T__At r—~ﬁ g—k“DAI H_kyAy
x‘_A.’L" y—'Aya T 2 3 y 2 .

Equations (2.20) - (2.22) can be rewritten in a matrix form as:
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The system of linear equations given in equations (2.20) - (2.22) is homogeneous.
For nontrivial solutions, the determinant of the coefficient matrix (2.23) must vanish.

Consequently, two equations can be found for the amplification factor, p~t as:

pAt/Z _ p—At/Q =0 (224)

4
(P2 —1)% + 5002 [ri sin? 6 (3—7sin®6,) + r2 sin® 4, (3 — sin® Hx)JpAt =0 (2.25)
Obviously, p™* = 1 is the solution of equation (2.24). From equation (2.25), the

amplification factor can be determined as

2=l (T2 — 41)'7?

5 (2.26)
where [' is given by
= ng [rg sin6;(3 — ysin®,) + r2 sin® 4, (3 — -y sin? BZ)} (2.27)
The stability condition
o™ <1 (2.28)
is satisfied, if I'> — 4T is less than or equal to zero, i.e.,
0<T <4 (2.29)

Substituting equation (2.27) into equation (2.29) and assuming that Az = Ay for

simplicity, we obtain

31/2

G < - (2.30)

. . . . 1/
[sm2 0:(3 — vsin®6,) + sin® 6, (3 — sin® Hz)]
where C, is the Courant number. If Imamura and Goto’s explicit scheme is used

(v = 0). the stability condition can be simplified to be

(2.31)




The largest allowable Courant number is 0.7071 when sin 8, = sin g, =1forthey =20
case. On the other hand, if the modified explicit scheme is used (7 = 1), the largest
Courant number is 0.8660. Therefore, for the same Az and C, values, the modified
explicit scheme allows slightly larger time-step size than that required by Imamura
and Coto's scheme. For a one-dimensional case, C. for both schemes becomes the

usual stability condition for an explicit scheme; that is, G less than or equal to one.
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3 Nonlinear Model
3.1 Introduction

In the previous section, linear shallow-water equations are used to simulate a distant
propagation of tsunamis. The numerical dispersion has been manipulated to mimic
the frequency dispersion of the linear Boussinesq equations.

As the tsunami propagates over a continental shelf and approaches a coastal area,
linear shallow-water equations are no longer valid. The wavelength of the incident
tsunami becomes shorter and the amplitude becomes larger as the leading wave of a
tsunami propagates into shallower water. Therefore the nonlinear convective inertia
force and bottom friction terms become increasingly important, while the significance
of the Coriolis force and the frequency dispersion terms diminishes. The nonlinear
shallow-water equations including bottom frictional effects are adequate to describe
the flow motion in the coastal zone (Kajiura and Shutc, 1990; Liu et al., 1994c¢).
Furthermore, along the shoreline, where the water depth becomes zero, a special

treatment is required to properly track shoreline movements.

3.2 Governing Equations

The nonlinear shallow-water equations including bottom frictional effects can be writ-

ten as:
a2 =0 (3.1)
%—g %(1§>+%<\(§\)+QH;+QH:O (3.3)




Bottom frictional terms can be modeled by using either Chezy’s formula or Manning’s

formula, i.e., for the Chezy’s formula

g . o\ 1/2 g ay\ 1/2 ,
Ty — —C'—féﬁp (Pz -+ Qz) y Ty - C;ZHsQ (P2 + Qz) (3—1)
in which Cj is the Chezy’s frictional coeflicient, and for the Manning’s formula
2 2
. gn 2 2\ 1/2 _gn 9 2\ 1/2
2= P (PP +Q )" = sl (P?+@?) (3.5)

where n is the Manning’s relative roughness coefficient. Both empirical constants,

n and Cj, are dependent of the flow condition, i.e., the Reynolds number and the

surface roughness of the beach.

3.3 Finite Difference Scheme

The nonlinear shallow-water equations, (3.1) - (3.3), are discretized by using the leap-
frog finite difference scheme used in the linear model (i.e. equations (2.10) - (2.12) ).
;The nonlinear convective terms are discretized with an upwind scheme. In general,
the upwind scheme is conditionally stable and introduces some numerical dissipation.
But if the velocity gradient in the fluid field is not too steep and if the stability
condition, which is \/g—h * At/Azx < 1, is satisfied, upwind formulation is preferred for
solving advective terms since, at each time step, only a small computational effort is
required.

The linear terms of the governing equations are also discretized by the leap-frog
finite difference scheme. The nonlinear convective terms of the momentum equations

are discretized by using an upwind scheme and given as:

2 2 2
0 (P2> 1 {\ (Pﬁw/‘z,j) 1y <Pi11/2.j> Y (Pin—l/ZJ) -l (3.6)
At r T AL 11 T A2 O 137 7rn | ey
317 \ H _XWL H?+3/‘2.,j Hirl+l/’2,j .LL.[;L__l/:_).j J
: n PO DN 1
O (/PQ\) _ _%—I-\ (PQ)Z'+L/2.J'+L W (A Q)L’+1/"2__j Iy (1 ‘Dd)i—;—l/Z.j-l l (3.7)
o\ H )T Ayl E TR AB T m ot
YN A e 12 +1 12,5 Li+l/20-1 |
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i+1,j+1/2

— A\
Az

d /PQ)_ 1 \. (PQ)?+1,J‘+1/2+\ ( Qz]+1 1) ‘(PQ)‘ JE1/2
31" rn 82T ABTT

1,j+1/2 i—1,7

ay <Q2> 1 \ (Qf'fj+3/2)2 o (QZ]'+1/2)2 1) < ?J

= | A - : - 43 ~
Ay Hu+3/2 Hi,j+1/2 Hi,j—l/z

In equations (3.6) - (3.9), coefficients, ), are determined from

[/\1120, /\12—1 /\13:—-1, if PH—l/Q] >0
] /\11:1, /\1’)———1, /\1_2:0, if P +1/2,7 <0

Aoar =0, Agp =1, Agg=-1, if Q?—}-l/Q,j 20
/\21 = 1, /\22 = "“17 /\23 = 07 if Q?—i—l/Z,j <0

A =0, Ada=1, Asz=-1 if PP, >0
/\312 /\32:—1, /\3320, if EJ_H/‘) <0

A =0, Ap=1 Ag=-1 if @}, 20
/\41 =1, /\42 = —1, /\43 =0, if QZ]»+1/2 <0

Since the upwind scheme is employed, the discretized momentum equations are only

first order in accuracy in terms of spatial grid sizes. Bottom frictional terms are

discretized as

— n-+1 n
=H =1, (PH—I/?] z‘+1/2,j)

1
H =, (Q?;_-H/Z + &5 ]+1/2)

in which v, and v, are given by

1 ) . 2 -’} 1z
— P /9 ?—L 2
Ve 3Cf3 (/HZ’H/z >“ “ i J) + ( H2. )
5 1/2
e )

(3.10)

(3.11)




for the Chezy’s formula, and

1 2 . 1/2
Yo = %—_‘—g_n——""_? [(pﬂw/u\'z + (Q?ﬂ/ﬁj)-J /
n e J/ 2
(Hiﬂ/:',j) )
1 gn? 2 211/2
W= 1B {(Pﬁjﬂm) + (Q?,jﬂ/z) }
(Hi'?jﬂ/?)

for the Manning’s formula. Finally, finite difference forms for the continuity and

momentum equations are written as

n+1/2 __ ~n—1/2 n n n
Gt =g - T'I(PHI/?J B i—1/2,j> B TU(Q%J‘H/? B Q?J—I/2> (3.12)

?J Z 7]

) .
. n+1/2 1/2 +1/2
PzTi/ZJ T 14 A [(1 - VzAt)Pﬁrl/?J regH; +1/2,j ( ’Tl’j B 73 )]

- 2 2 2
"y (Pra) A (Piil/%) i MBM
1+ Z/IAt | H;L+3/2’j ) Hin+1/2,j ?—1/2,]'
. B {Pp\n fPQ\n o (PQ\TL . -l
- 7 Ty < /\21\ ¥n/z+1/ 2+l Ay \__n/_“f_l_/‘z_{ + ,\23_—-—————\ n/lﬂ/z’]_l (3.13)
“+ v, tL i+1/2,j+1 i+1/2,j i+1/2,5-1
1 \ +1/2 (pnl/2 _ ntlf2
"l = T [ A Qs — g BT (S = G
y
B Tz | (PQ)?—H.J'H-/Q + s (PQ)ZJ+1/2 +/\33%’2i1_/2_
1+ At i HY vy hi+1/2 H 1 gy
— 2 2 2
_ T |y, (Qi,j+3/2) ) (Q%H/?) + s (Qi*j’l/z) (3.14)
1+ vy At i T HY 50 O HY ‘ =172 o

in which 7, = At/Az and ry, = At/Ay. Following approximations have been used to

derive finite difference equations (3.12) - (3.14).

. 1
n+1/2 L [ pntl/2 n+1/2Y =
HL'+1/2,J' -5 \E{ T Hz*u ) (,-340)
12 1 +1/2 12
HU = o (HY + L) (3.16)
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HP ) = % (H2 4 B 4 12+ 1Y) (3.17)
HY 1o = i— (B2 + B B2 HEY ?) (3.18)
i1j2 = i (Pin—l/zj + Pl + Pl + Pz‘11/2,j+1> (3.19)
/2y = % ( -1zt Qiyrjo1y2 + QZjH/é + Q?+1,j+1/2) (3.20)

3.4 Moving Boundary Condition

[n carrying out numerical computations, the computational domain is divided into
finite difference grids. Initially, the free surface displacement is zero everywhere, as
are the volume fluxes. When the grid point is on dry land, the “water depth,” h,
takes a negative value and gives the elevation of the land measured from the mean
water level. Figure 3.1 shows a schematic sketch of the moving boundary treatment
used in the study. The MWL represents the mean water level and H; denotes the
flooding depth in figure 3.1. In a land (dry) cell the total depth, H = h + (, has
a negative value. On the other hand, the wet cell has a positive H value. The
interface between the dry cells and wet cells defines the shoreline. The continuity
equation in conjunction with boundary conditions along offshore boundaries is used
to find free surface displacements at the next time step in the entire computational
domain, including the dry (land) cells. The free surface displacement at a dry land
grid remains zero because the volume fluxes are zero at the neighboring grid points
(see figure 2.1). At a shoreline grid, the total depth. H is updated. A numerical
algorithm is needed to determine if the total water depth is high enough to flood
the neighboring dry (land) cells and hence to move the shoreline. The momentum

equations are used to update the volume Auxes in the wet cells only.




To illustrate the moving boundary algorithm. the one-dimensional case is used
as an example. As shown in figure 3.1, the real bathymetry has been replaced by
a staircase representation. The total v(_i“elp«‘t‘h;_ﬂﬁ , is calculated and recorded at grid
points i—1, 1 and i+1, while the volume flux is computed at grid points i—1/2, i+1/2
and i-+3/2. As shown in figure 3.1 (a), the i-th cell is a wet cell in which the total
depth is positive and the i+ 1-th cell is a dry (land) cell in which the total depth
is negative and the volume fluxes are zero. The shoreline is somewhere between the
i-th and the i-+1-th grid points. Then, the volume flux at the i+1/2-th grid poiﬁt is
»qsms_igﬁned;to be zero. Therefore, the shoreline does not move to the on-shore direction.
When the water surface is rising as shown in figure 3.1 (b), however, the volume flux
at the 7+1/2-th grid point is no longer zero. The shoreline may move one grid point
to the on-shore direction. After the total depth has been updated from the continuity
equation, the following algorithm is used to determine whether or not the shoreline

should be moved. If H; > 0, possible cases can be summarized as

- If H;.; <0and hiyy +¢ <0, then the shoreline remains between grid points ¢ and

i + 1 and the volume flux P4/, remains zero.

- If H;xy < 0 and ki + ¢ > 0, then the shoreline moves to between grid points
i+1 and 1+2. The volume flux P,/ may have a nonzero value, while P, 3/2

is assigned to be zero. The flooding depth is Hy = hir1 + G-

- If H;,1 > 0, then the shoreline moves to between grid points ¢+1 and i+2. The
volume flux P/ may also have a nonzero value, while P53/, has a zero value.

The flooding depth is Hy = max (his1 + §, hit1 + Cir1)-

In the above cases, the time-step index has been omitted for simplicity. The algo-
rithm is developed for a two-dimensional problem and the corresponding y-direction

~

algorithm has the same procedure as that for the r-direction.



\/ To save computing time, the regions that represent permanent dry (land) can be
g excluded from the computation by installing a depth criterion. Moreover, when H is
| Verv small, the associated bottom friction term become very large and, accordingly,
ia lower bound of the water depth is used to avoid the dlfﬁcultw The finite difference
approximation for the continuity equation correctly accounts for positive and zero
values of the total depth on each side of a computational grid. The treatment of
flooding and ebbing grid cells guarantees mass conservation while accounting for the
flooding and ebbing of land. The occurrence of a zero value for the total depth H

on one side of a cell implies zero mass flux until H becomes positive. A grid cell is

considered a dry cell only if the total water depths at all sides are zero or negative.




=C¢ hi+1
A RO | SR
[ i+1/2 i+1 i+3/2
(a) case 1
\V _ <
i i !
‘ | , Hy ~
Ci—l Cl i
1 hi+1
MWL ¢ A S
h J g [ i+1/2 i+1 i+3/2
i-1 i-1/2
(b) case 2

Figure 3.1: A schematic sketch of the moving boundary treatment
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4  Multi-Grid Coupled Model
4.1 Introduction

There are several reasons for applying the nested multi-grid model. When the water
depth varies within the computational domain, it might be desirable that different
grid size and time step size be employed in different subregions so that the frequency
dispersion is adequately represented. On the other hand, offenly we would like to
obtain detailed information in the coastal region. Finer grids should be used only in
certain specific regions.

In the present model either the linear or the nonlinear version of shallow-water
equation with different subcoordinate system ( i.e. Cartesian or Spherical) can be
assigned to a specific subregion. These subregions are dynamically connected. The
‘model has also been designed so that any ratio of grid sizes between two adjacent

subregions can be used.

4.2 Connecting Boundary Condition

We briefly describe the technique for exchanging information between two subregions
of different grid sizes. As shown in figure 4.1, a smaller grid system is nested in a
larger grid system with the ratio of 1:3. The arrows represent the volume fluxes, P
and @, across each grid cell, while circles and dots indicate the locations where the
free surface displacement is evaluated.

At a certain time level, volume fluxes in both large and small grid systems are
determined from the momentum equations, with the exception of volume fluxes for
the smaller grid system along the boundaries between two subregions. rIi‘hese data
are determined by interpolating the neighboring volume flixes from the large grid
svstem. The free surface displacement at the next time level for the small grid system

can be calculated from the continuity equation. Usually the time step size for the




smaller grid system is also smaller than that used in the larger grid system to satisfy
the CFL (Courant-Friedrichs-Lewy) condition, which is ¢+ dt/dz < 1. Therefore, the
volume fluxes along the boundary of the small grid system at the next time level must
be obtained by interpolating the neighboring volume fluxes obtained from the large
grid system over a larger time interval. After the free surface displacements in the
small grid system are calculated up to the next time level of the large grid system,
the free surface displacements in the large grid system are updated by solving the
continuity equation.

Let us describe these procedures step by step. Suppose all flux values in the inner
and the outer region are known at time level ¢ = ¢;. And we need to solve the inner
and the outer region values at the next time step ¢ = t;. Remember that the time
step of the inner region is one half of that of the outer region.

[STEP 1] Get the free surface elevation at ¢,/ in the outer region by solving
continuity equation. -

[ST EP 2] To solve the continuity in the inner region, however, we need to have the
flux information along the connected boundary at t;. So the flux values in the outer
grid at the connected boundary are lineary interpolated and then those interpolated
values are assigned to the flux in the inner grid at the boundary.

[STEP 3] Get the free surface elevation at ti11/4 in the inner region by solving
continuity equation.

[STEP 4] Get the flux values at ¢4/ in the inner region by solving momentum
equation.

[STEP 5] To get the free surface elevation at t;,3/4 in the inner region, we should
have the flux information along the connected boundary at fyy1/2. To get these
information we can do in the following way. First, since we already know the free

surface elevation at .1/ and flux at ¢, in the outer region, we can get the flux in
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the outer region along the connected boundary at ¢, by solving linear momentum
equation@pg;gll_;.i Second_f these flux values at ¢, are lineary interpolated along the
connected boundary. An& to get the value at t1.1/, outer flux values at ¢; and ¢, are "
timé”averaged. Those sp;tially and timely averaged flux values are assigned to the
flux in the inner grid at the boundary.

[STEP 6] Get the free surface elevation at tiy3/s in thé inner region by solving
continuity equation.

[STEP 7] To transfer the information from the inner region to the outer region,
the free surface elevation in the inner region is spatially averaged over the grid size
of the outer region. These averaged elevation values at ¢4 /4 are then time averaged
with those at #,,1/4 in inner region. These spatially and timely averaged elevation
values in the inner region update the elevation values at t1+1/2 in the outer region.

[STEP 8] Get the flux values at ¢, in the inner region by solving momentum
equation.

[STEP 9] Get the flux values at ¢, in the outer region by solving momentum

equation.
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4.3 Numerical Example

Since the linear and nonlinear components of the model have been verified previously
in terms of numerical accuracy and stability (Cho, 95), the most critical element in
the present nested model is the stability of the numerical scheme for the connecting
boundary condition. To examine the connecting boundary condition, we would like
to test the nested model by checking the propagation and the reflection of solitary
wave across the connecting boundary.

In the case of the propagation of solitary wave over constant water depth, com-
parisons between the numerical solutions and the corresponding analytical solutions
are made. Also, to verify the validity of the proposed scheme which enable us to use
any ratio of grid sizes between two adjacent subregions, numerical solutions of the‘

grid ratio of 1:3 and 1:5 is compared.

4.3.1 Propagation of Sclitary Wave Al
A

In the first example, we would like to check our mested grid model by investigating

the propagation of solitary wave over constant depth. To simulate a solitary wave,

_e:awgp' other

e e e S -

which could exist only when the nonlinearity and dispersion is balanced

precisel}(, we need to represent the physical dispersion. As pointed out earlier, the
p;esent model is able to replace the physical dispersion by the numerical dispersion,
which is caused by the leading numerical error of the leap-frog scheme. So we should
choose the grid size properly.

Figure 4.2 shows the numerical domain which is used in our test. The ratio of
the grid size between adjacent domain is 1:3, so whole ratio of grid size is 1:3:9. We
made another computational domain whose ratio is 1:5:25 to compare the numerical
result with that of 1:3:9. Note that the region B is located from 18.4 to 96.5 in

z/h coordinate and region C is from 34.5 to 78.2 By setting the inner region of high
/ 5 J [s)
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resolution (region B and C) such as shown in figure 4.2, we could check the validity
of connecting boundary condition as the wave propagates through different regions.

A sequence of snapshots of free-surface displacement for the propagation of soli-
tary wave is shown in figure 4.3. The water depth A is 30m, wave length is about 604,
nonlinearity a/h is 0.01 and frequency dispersion &£k is 0.1. In subsequent 3-D plots,
the free surface displacement in the areas corresponding to the region B and C is
plotted together with the outer regin A in order to check if there is any discontinuity
of water surface in different regions. We can see that the wave propagation is very
smooth and that there is no significant numerical error when the wave acrosses the
boundaries of three regions of different grid resolution. In other words the connecting
boundary condition seems to exchange the information between two adjacent regions
very well.

Figure 4.4 shows the free surface profile along the center line ( from « to § in
Figure 4.2). In this plot we would like to compare the numerical results of uniform
grid model with those of the nested grid model. We can expect that if the connecting
boundary condition works well, the numerical result of coupled model should be exist
between the result of uniform grid model of low resolution and high resolution. In
figure 4.4, we can see the result of nested grid model of 1:5:25 (dx=81m:16m:3.2m)
lies between the result of dx=81m and dx=16m in region C. Also the result of 1:5:25
agrees generally well with that of 1:3:9 which enable us to believe that the numerical
scheme for connecting arbitrary ratio of grid size also works well. Notice that in the
figure 4.4 the free surface distribution starts from z/h = 40 for the nested grid model
where two subregions are connected.

In figure 4.5 we compare our numerical results with analytical solution with higher
nonlinearity { a/h = 0.05). Since we introduce the numerical dispersion by choosing

the grid size. if we reduce the grid size, we cannot get proper amount of dispersion
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which is needed to simulate the solitary wave propagation. In other words, if we
remove the numerical dispersion by making grid size too small, we cannot generate
solitary wave anymore. In figure 4.5, by reducing the grid size (dz) from 8lm to
16m, we can see the wave form is much steep and asymmetric compared with the
analytic soluction, which tells us that in case of dx=16m, we put too little numerical
dispersion. On the other hand, when the grid size is 81 m, we put too much numerical
dispersion so that the oscillatory tail is generated and the leading wave amplitude is
reduced. The water surface profile of the nested grid model (1:3:9) located between

the results of the uniform grid model of dz:81m and dz:16m, which is less dispersive

the fine uniform grid model. It is resonable result because in nested grid region the
grid size is smaller than the coarse uniform grid (dz=81m) and larger than the fine
uniform grid (dz=16m).

To check further the validity of the connecting boundary condition, a solitary
wave propagating with an angle of incidence of 40 degree is investigated. In figure
4.6 a sequence of snapshots of free-surface displacement is shown. As we can see in
figure 4.6 the connecting boundary condition works well in case when information
comes from the inclined direction. Figure 4.7 shows the free surface profile along
the diagonal line ( from + to d in Figure 4.2). The results are similar to the normal
incidence case. The nested grid model results in the region B and C lie between
uniform grid model of high resolution and low resolution. These results provide
strong evidence that the connecting boundary condition can handle well when the

incoming wave is propagating in an oblique angle to the connecting boundary.
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Figure 4.4: Water Surface Distribution along the Central Line (Normal Incidence;




1.0 —

0 10 20 30 40 50 60 70 80 90 100 110

nonlinearity (A/h)=0.05,h=30m, a= 1.5m

—— Not coupled (dx = 81m), t=3 min
------ Not coupled (dx = 16m)
——— Coupled (1:3 twice, dx = 81m : 27m: 9m

- Analytic Solution

<.

Figure 4.5: Water Surface Distribution along the Central Line (Normal Incidence)
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4.3.2 Reflection of Solitary Wave

Up to now, we have investigated the suitability of the the connecting boundary
condition for a solitary wave propagation. For a more complex wave propagation
problem, the boundary condition needs to handle the situation where the incoming
wave and outgoing wave coexist across the connecting boundary. A simple example
is the intersection between incident and reflected wave in front of a solid object.
To simulate this case two solitary wave is sent at the boundary in such a way that
the second solitary wave can meet the refleced first solitary wave at the connecting
boundary. We made a very thin vertical wall in the middle of region C in figure 4.2.
(from 6 to p) A sequence of snapshots of free-surface displacement when the vertical
wall exist is shown in figure 4.8. Generally speaking, the nested grid model describes
the reflected wave well. We cannot see any extraordinary phenomena when reflected
wave passing three different region. Since no analytical solution is available in this
case, we compare the numerical solutions of the nested grid model with those of high
resolution uniform grid model to verify the connecting boundary condition.

A sequence of snapshots of free-surface displacement along the center in the do-
main is shown in figure 4.9. At ¢ = 3 (min), the second solitary wave is coming from
the left boundary and at that time the first solitary wave is reflected at the vertical
wall. And these two waves are intesect each other at ¢t = 4 min at the connecting
boundary. The nested model overestimate the free surface elevation at the connected
boundary but overall transmission of two waves is generally well represented as we
can see in the figure at £ = 5 (min). The overestimation tells us that the connecting
boundary scheme might be inaccuate when nonlinear interaction is strong.

Figure 4.10 shows a time history of free-surface displacements at the point ab
and ¢, calculated from the nested-grid model and the uniform grid model. Note that

these points are selected very close to the connecting boundary. We can sce a a slight
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difference especially at point ¢ which locate very near the vertical wall. The peak
interaction can be detected at ¢ = 4 (min) in plot (b). As we can see there is some
phase shift but the maginutede of maximum amplitude is almost similar.

Until now, our test have been performed on the constant water depth. In our
second example we would like to test the nested-grid model if it could represent
the reﬁectivevwave which occurs when the long wave propagates from shallow water
depth to deep water depth. The water depth is abruptly changed into very deep
at the middle of the computational domain. In figure 4.11 a sequence of snapshots
of free-surface displacement is shown. Since the advective term is considered in the
region C, the general feature of propagation in the middle region shows a little bit
different from that of outer region. However no additional numerical error is observed.

As previous case, the numerical solution of the nested-grid model is compared
with that of the uniform grid high resolution model. Time history of free-surface
displacement at the point a,b and c is shown in figure 4.12 and the comparison is
made. The result is very similar to that of the previous case. In other words, this
model can also represent the reflected wave due to the abrupt change of water depth
within the same range of numerical errors as the case where wave is reflected by

vertical wall. Due to this possibility we could expected that this model can represent

the wave which is trapped in the shelf region.
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5 Case Study - 1986 Hwa-Lien (Taiwan) Tsunami

Taiwan is located in a voung and active Circum-Pacific Ocean Relt on the boundary
between the Eurasian and Philippine Sea plates. Historically, Taiwan has suffered
from several damaging tsunamis. Fortunately, in recent years it has been relatively
uneventful. The most recent recorded local tsunami occurred on November 14, 1986,
which was generated by an earthquake whose epicenter was about 60 km offshore of
Hwa-Lien. Tide gage data inside the Hwa-Lien harbor as well as those at Ishigaki
island and Miyako-Jima island indicated that a small tsunami was generated.

In this section, numerical models described in previous sections are applied to
the 1986 Hwa-Lien (Taiwan) tsunami. Using the available tide gage data, the source
region parameters are evaluated. Through this exercise, we would also like to achieve
better understanding of the dynamic interaction between harbor oscillations and
trapped waves on the continental shelf.

This earthquake occurred very close to the coastline of east side of Taiwan. It is

estimated that the fault zone is about 35 km long and 35 km wide and the displace-

i ke Al f
ment of the fault is about 3.5 m. The orientation of the fault is N33°E. The focal

depth of the slip is estimated at 13.9 km with aﬁ 50°“slip angle and a 30° dip angle
(Kanamori and Cipér, 1974; Kanamori and Anderson,r 1975). Using these estimated
fault parameters, the initial free surface displacement can be estimated (Mansinha
and Smylie, 1971). The wavelength of the initial tsunami form is roughly 60 km and
the maximum wave height is about 0.8 m. The leading wave of the tsunami arrived
at Hwa-Lien about 10 to 15 minutes after the earthquake.

First, the linear model with spherical coordinate is applied to the computational
region which covers the whole Taiwan region includingvthe Taiwan strait. By this

simulation we could understand the general feature of 1986 Hwa-Lien tsunami, which
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Table 5.1: The parameters of the 1986 Taiwanese earthquake for fault model

| parameter | value |

length of fault (L) 35.0 km
width of fault (V') 35.0 km
orientation of fault (6) N33°E
dip angle (§) 30°

slip angle () 50°
displacement of fault (U) | 3.5 m
focal depth (d) 13.9 km

is similar to the case of the wave propagation around a circular island.

To investigate the effect of tsunami in the Hwa-Lien harbor, we apply the multi-
grid coupled model, which mainly covers the eastern side of Taiwan. To verify our
proposed initial conditions, a comparison between the recorded data and the numer-

ical result is made in terms of arrival time and magnitude of the leading wave.

5.1 Initial Free Surface Profile

The determination of the initial free surface displacement of a tsunami from the
seismological data is a very difficult and unsolved issue. The parameters used to
determine the initial free surface displacement are summarized in the table 4.1. The
detailed description of the theory can be found in the literature (e.g., Mansinha and
Smylie, 1971).

The computer program contains an algorithm determining the initial free surface
prgﬁle: We here briefly describe the procedure of the estimation of initial free surface
profile of tsunami proposed by Mansinha and Smylie (1971). According to Mansinha
and Smylie, the initial free surface profile is consisted of two components, that is the
strike-slip displacement, and the dip-slip displacemem. A coordinate system £ mea-

sured positive down the fault dip as plotted in figure 5.1 is introduced for simplicity.
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The analytical expression of the strike-slip displacement is given by

du TN Ju;  Ou}\ ,
= U 1/ / {(a—é_;+5§> sind — (653 +(9*fl) (,OS(SJ d§1d£ (Ol)

The analytical expression of the dip-slip displacement is given by

Ou ouy  Ou?
/LU/ / [ (51115—— —co 85) + (652 7, )J dédé (5.2)

{1 < L and d <€ < D as shown in figure 5.1.

After some algebra we finally derive the following expressions for the integrals of

the strike-slip displacement as:
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The final expressions of the dip-slip displacement are given as:
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)2'! 1/2

%)

= [(Tl — &)+ (- &)+ (5 + &
— &3

S |
R= (21— &)+ (@2 — &) + (23— &) (5.9)

in which S and R are distances between the field point (z;, x5, z3) and the source
point (&1, &2, &§3) on the fault plane and the corresponding source point (&1, &, —&;)

on the image fault plane, respectively (see ﬁgure 5.2).

ry = Zo Sind — I3 CoSY, T3 = Xy COSO + x3 sind

—Z3 cosd + x3 sind

g2 = T3 sind + x3 cosd, g3

in which ry, 73 and g¢», g5 are field coordinates measured normal and down dip to to
the fault plane and its image, respectively. In terms of the new variables, S and R

can be rewritten as:
1/2 q 511/2
S=[@—-&)+r]" =K+ (g +9)]

e (5.10)

R = [:(l'l e fl)z + T‘% -+ (T3 - 6)2}
in which A is the projection of S in the z; = 0 plane and k is its projection in the
=4+ (F.+8)

S I R
Following notations are used in equations (5.1)-(5.8) for simplicity.

plane g3 = 0.

ap = In(R+ 13 = &), ag = In(S + ¢z + &)

az = 1I1(R+$3 +€3), ay = ln(5+$3 ‘f‘fg)

_ g | ~ \ . L.
as =R + 21 — &), as = In(§ + 11 = &)
by = 1 + 3 tan?d, by = 3 tand secd
by = 272 s8ind, by = qu + zo sind
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bs = 2712 cosd, by = R + 3 tan’$
by = dgoxy sin® §, bg = 2 (g2 + T2 sind)(z3 + gz sind)
by = S(S + g3 + &), bog = 4qux3sind
biu = (z3 + &) — g3 sind, bz = 4¢3 q3 T3 cosé sind

bis = 25 + g3 + £, by = S*(S + ¢35 + &)

The initial free surface profile of the 1986 Taiwanese tsunami is plotted in figure

5.3 The peak of the initial free surface profile is about 0.8 m and the wavelength is

about 60 km.




Figure 5.1: The fault geometry and coordinate system
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5.2 LINEAR Model
5.2.1 Bathymetric Data and Grid System

The bathymetric data near Taiwan is generated by digitizing the chart which is
published by Taiwan. The region where the LINEAR model is applied is shown
in figure 5.4 This region covers from (118°E, 20°V) to (124°F, 26°N) with the grid
resolution of 1" x 1’ which is roughly 1500m x 1830m. The grid system in this model is
360 x 420 so that the area of whole computational domain is about 610km x 770km.
To include the effect of earth curvature, a Spherical coordinate system is used in this
region. As we can see in figure 5.4 the depth gradient in the eastern side of Taiwan
is very steep. On the other hand the depth in western side is very shallow compared

to that of eastern; less than 500 m.
5.2.2 Simulation result and discussion

The distant propagation of the 1986 Hwa-Lien tsunami is calculated using the LIN-
EAR model. The object of this simulation is to know the general feature of 1986
Hwa-Lien tsunami in large scale.

A sequence of snapshot of the contour for the propagation of tsunami is shown in
figure 5.5 to 5.10 As the tsunami propagates around Taiwan, the wave front spreads
over a large area, reducing the leading wave amplitude. Since the western side of
Taiwan is very shallow compared with the eastern, the tsunami takes more than
three hours to entirely circle Taiwan.

Figure 5.11 shows a maximum runup distribution along the eastern side of Tai-
wan. In this LINEAR model, the moving boundary condition is not considered, since
the grid resolution is very coarse (1.5km x 1.8km) and the advective term is not
included. Therefore the maximum runup here means the highest water surface ele-

vation adjacent to coastline which is regarded as a vertical wall in this model. Using
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this maximum runup distribution, we can understand the concentration of the energy
of tsunami. As we can see, the middle part of the eastern side seems to have most

serious concentration of the 1986 tsunami where the Hwa-Lien harbor is located.




